
1,2-OXAPHOSPHORIN-3-ENE DERIVATIVES IN THE REACTION OF SO₂C1₂ WITH DICHLORIDES OF 2-CHLORO-3-ALKYL-1,3-ALKADIENEPHOSPHONIC ACIDS

Christo M. Angelov[#] and Valeri Christov

Chair of Chemistry, Higher Pedagogical Institute, 9700 Shoumen, Bulgaria

<u>Summary</u>: 2,4,5-Trichloro-2-oxo-1,2-oxaphosphorin-3-enes was sinthesised using the interaction of sulfuryl chloride with dichlorides of 2-chloro-3-alkyl-1,3-alka-dienephosphonic acids.

Recently it was reported that during the chlorination of dichloride of 2-chloro-3-methyl-1,3-butadienephosphonic acid, a mixture of addition products is formed¹. In contrast to this result we found that the reaction of dichlorides of 2-chloro-3-alkyl-1,3-alkadienephosphonic acids <u>1a-g</u> with sulfuryl chloride leads to the formation of six-membered heterocycles:

 R^1 , R^2 , R^3 : see the Table

The reaction takes place in non-polar solvents (CCl_4 , $CHCl_3$ etc.) by heating up to 50° or 60°C. The structure of the obtained compounds <u>2a-g</u> was established by i.r. and n.m.r. spectroscopy (see the Table). Thus, the ¹H-n.m.r. spectra of <u>2a-d</u> and <u>2g</u> show signals for H⁶ (δ 4.50 - 4.99 ppm) with a considerable coupling constant ³J_{HP} (8.6 - 9.2 Hz) characteristic for the CH-O-P group in the sixmembered rings². The observation of two doublets for H³ (δ 6.34 - 6.68 ppm,²J_{HP} 12.4 - 13.6 Hz) shows that the compounds <u>2a-g</u> represent mixtures of stereoisomers (chirality at C⁵ and P or at C⁵, C⁶ and P). The chemical shift of ³¹P of the chloride <u>2c</u> appears at higher field (δ -13.4 ppm) than in the case of 1,2-oxa-

¹H-n.m.r. and i.r. spectra of <u>2a-g</u>

M	R1	R ² (R ³)	ł	•Shifts S ppm R ¹ (R ²)	H P (R ¹ P)	i.r. spectra cm ⁻¹ P=0 (C=C)
<u>2a</u> *	Н	н (сн ₃)	6•43 6•47	4•7 6 (4•52)	13.0 (^{17.0}) (19.0)	
<u>b</u>	Ħ	^{СН} 3 (СН ₂)	6•49 6•51	4•90 (1•56)	13•2 (9•0)	1303
<u>c</u>				4•99 (1•65)		1310
				4•58 CH ₃ 1•15 OH ₂ 2•00		1300 (1593)
<u>e</u>	CH3	сн ₃ (сн ₃)	6•45 6•48	1 .87 (1.89)	12.4 (-)	(1590)
<u>f</u> C	^H 3 (1	^{СН} 3 С ₃ Н ₇)	6•61)6•64	1.83 (1.85)	13.0 (-)	1301 (1592)
		CH ₂)				13 1 0 (1590)

phosphol-3-enes³. When isolating 2a-g, SOCl₂ was also obtained and identified by its physical constants.

The formation of 1,2-oxaphosphorin--3-ene chlorides when SO₂Cl₂ reacts with the compounds <u>la-g</u> is probably favoured by the partial dissociation of the reactant to chlorine and sulfur dioxide as well as by the s-cis conformation of 1,3-dienic system in the starting phosphonates <u>1a-g</u>⁴. Chlorine is presumably attacking the $C^3 - C^4$ double bound, thus forming cyclic chlorides with five-coordinate phosphorus A^5 . These in turn react very fast with sulfur dioxide giving 2a-g. The reaction described above is a new method for synthesis of 1,2--oxaphosphorin-3-ene derivatives.

The substance <u>2a</u> is obtained together with smoll amounts of 1,2-oxaphosphol-3--ene chloride.

References:

1. A.M.Shehade, V.M.Ignatjev, V.I.Zaharov, B.I.Ionin, A.A.Petrov, Zh.Obshch. Khim., <u>49</u>, 337 (1979).

2. Ch.M.Angelov, V.Christov, B.I.Ionin, M.Kirilov, A.A.Petrov, Zh.Obshch. Khim., <u>49</u>, 2381 (1979).

3. T.S.Mihailova, Ch.M.Angelov, V.M.Ignatjev, A.V.Dogadina, V.I.Zaharov, B.I.Ionin, A.A.Petrov, Zh.Obshch.Khim., <u>47</u>, 2701 (1977).

4. G.A.Berkova, A.M.Shehade, V.I.Zaharov, B.I.Ionin, A.A.Petrov, Zh.Obshch. Khim., <u>47</u>, 957 (1977).

5. T.S.Mihailova, Ch.M.Angelov, V.M.Ignatjev, B.I.Ionin, A.A.Petrov, Zh. Obshch.Khim., <u>49</u>, (1979).

(Received in UK 5 November 1980)